Computing boundary slopes of 2-bridge links
نویسندگان
چکیده
We describe an algorithm for computing boundary slopes of 2-bridge links. As an example, we work out the slopes of the links obtained by 1/k surgery on one component of the Borromean rings. A table of all boundary slopes of all 2-bridge links with 10 or less crossings is also included.
منابع مشابه
Boundary Slopes of 2-Bridge Links Determine the Crossing Number
A diagonal surface in a link exterior M is a properly embedded, incompressible, boundary incompressible surface which furthermore has the same number of boundary components and same slope on each component of ∂M . We derive a formula for the boundary slope of a diagonal surface in the exterior of a 2-bridge link which is analogous to the formula for the boundary slope of a 2-bridge knot found b...
متن کاملVirtually Embedded Boundary Slopes
We show that for certain hyperbolic manifolds all boundary slopes are slopes of π1-injective immersed surfaces, covered by incompressible embeddings in some finite cover. The manifolds include hyperbolic punctured torus bundles and hyperbolic two-bridge knots.
متن کاملBoundary Slopes for Montesinos Knots
FOR A KNOT K c S3, let S(K) c Q u {CQ} be the set of slopes of boundary curves of incompressible, %incompressible orientable surfaces in the knot exterior, slopes being normalized in the standard way so that a longitude has slope 0, a meridian slope co. These sets S(K) of %slopes are of special interest because of their relation with Dehn surgery and character varieties; see e.g., [2]. The only...
متن کاملSlopes and Colored Jones Polynomials of Adequate Links
Garoufalidis conjectured a relation between the boundary slopes of a knot and its colored Jones polynomials. More precisely, certain boundary slopes are detected by the sequence of degrees of the colored Jones polynomials. We verify this conjecture for adequate knots, a class that vastly generalizes that of alternating knots.
متن کاملIncompressible surfaces and Dehn Surgery on 1-bridge Knots in handlebodies
Given a knot K in a 3-manifold M , we use N(K) to denote a regular neighborhood of K. Suppose γ is a slope (i.e an isotopy class of essential simple closed curves) on ∂N(K). The surgered manifold along γ is denoted by (H,K; γ), which by definition is the manifold obtained by gluing a solid torus to H − IntN(K) so that γ bounds a meridianal disk. We say that M is ∂-reducible if ∂M is compressibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 76 شماره
صفحات -
تاریخ انتشار 2007